Asymptotic estimate of a twisted Cauchy-Riemann operator with Neumann boundary condition
Asymptotic estimate of a twisted Cauchy-Riemann operator with Neumann boundary condition作者机构:School of Mathematical Sciences Peking University Beijing 100871 China
出 版 物:《Frontiers of Mathematics in China》 (中国高等学校学术文摘·数学(英文))
年 卷 期:2017年第12卷第6期
页 面:1469-1481页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学]
主 题:Asymptotic estimate residue pairing
摘 要:Abstract For a holomorphic function f defined on a strongly pseudo-convex domain in Cn such that it has only isolated critical points, we define a twisted Cauchy-Riemann operator -δτf :-δ+τδf∧. We will give an asymptotic estimate of the corresponding harmonic forms as T tends to infinity. This asymptotic estimate is used to recover the residue pairing of the singularity defined by f.