咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A Fully Coupled Thermomechanic... 收藏

A Fully Coupled Thermomechanical Model of Friction Stir Welding(FSW) and Numerical Studies on Process Parameters of Lightweight Aluminum Alloy Joints

A Fully Coupled Thermomechanical Model of Friction Stir Welding(FSW) and Numerical Studies on Process Parameters of Lightweight Aluminum Alloy Joints

作     者:Saad B.Aziz Mohammad W.Dewan Daniel J.Huggett Muhammad A.Wahab Ayman M.Okeil T.Warren Liao 

作者机构:Department of Mechanical and Industrial EngineeringLouisiana State University Department of Civil and Environmental EngineeringLouisiana State University 

出 版 物:《Acta Metallurgica Sinica(English Letters)》 (金属学报(英文版))

年 卷 期:2018年第31卷第1期

页      面:1-18页

核心收录:

学科分类:080503[工学-材料加工工程] 0817[工学-化学工程与技术] 0806[工学-冶金工程] 08[工学] 0807[工学-动力工程及工程热物理] 0805[工学-材料科学与工程(可授工学、理学学位)] 0802[工学-机械工程] 0703[理学-化学] 0811[工学-控制科学与工程] 080201[工学-机械制造及其自动化] 

基  金:financial support provided by Louisiana Economic Development Assistantship (EDA) program partially supported by NASA through the NASA-SLS Grant # NNM13AA02G 

主  题:Aluminum alloy Friction stir welding Temperature distribution Plastic energy Frictional energy Rate-dependent model Friction modeling 

摘      要:This paper presents a new thermomechanical model of friction stir welding which is capable of simulating the three major steps of friction stir welding (FSW) process, i.e., plunge, dwell, and travel stages. A rate-dependent Johnson- Cook constitutive model is chosen to capture elasto-plastic work deformations during FSW. Two different weld schedules (i.e., plunge rate, rotational speed, and weld speed) are validated by comparing simulated temperature profiles with experimental results. Based on this model, the influences of various welding parameters on temperatures and energy generation during the welding process are investigated. Numerical results show that maximum temperature in FSW process increases with the decrease in plunge rate, and the frictional energy increases almost linearly with respect to time for different rotational speeds. Furthermore, low rotational speeds cause inadequate temperature distribution due to low frictional and plastic dissipation energy which eventually results in weld defects. When both the weld speed and rotational speed are increased, the contribution of plastic dissipation energy increases significantly and improved weld quality can be expected.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分