咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >On Some Families of Smooth Aff... 收藏

On Some Families of Smooth Affine Spherical Varieties of Full Rank

On Some Families of Smooth Affine Spherical Varieties of Full Rank

作     者:Kay PAULUS Guido PEZZINI Bart VAN STEIRTEGHEM 

作者机构:Department Mathematik FA U Erlangen-Niirnberg 91058 Erlangen Germany Dipartimento di Matematica 'Sapienza' Universith di Roma 00185 Roma Italy Department Mathematik FA U Erlangen-Niirnberg & Department of MathematicsMedgar Evers College-City University of New York Brooklyn New York 11225 USA 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2018年第34卷第3期

页      面:563-596页

核心收录:

学科分类:07[理学] 

基  金:partially supported by the DFG Schwerpunktprogramm 1388–Darstellungstheorie support from the National Science Foundation(USA)through grant DMS 1407394 the PSC-CUNY Research Award Program 

主  题:Affine spherical variety weight monoid multiplicity free Hamiltonian manifold moment polytope 

摘      要:Let G be a complex connected reductive group. Losev has shown that a smooth affine spherical G-variety X is uniquely determined by its weight monoid, which is the set of irreducible representations of G that occur in the coordinate ring of X. In this paper we use a combinatorial characterization of the weight monoids of smooth affine spherical varieties to classify:(a) all such varieties for G = SL(2) × C~×and(b) all such varieties for G simple which have a G-saturated weight monoid of full rank. We also use the characterization and Knop's classification theorem for multiplicity free Hamiltonian manifolds to give a new proof of Woodward's result that every reflective Delzant polytope is the moment polytope of such a manifold.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分