An improved constant volume cycle model for performance analysis and shape design of PDRE nozzle
An improved constant volume cycle model for performance analysis and shape design of PDRE nozzle作者机构:Shanghai Institute of Applied Mathematics and Mechanics Shanghai University
出 版 物:《Applied Mathematics and Mechanics(English Edition)》 (应用数学和力学(英文版))
年 卷 期:2018年第39卷第2期
页 面:193-206页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by the National Natural Science Foundation of China(No.11472167)
主 题:pulse detonation rocket engine (PDRE) nozzle specific impulse thrust,constant volume cycle (CVC) model
摘 要:An improved constant volume cycle (CVC) model is developed to analyze the nozzle effects on the thrust and specific impulse of pulse detonation rocket engine (PDRE). Theoretically, this model shows that the thrust coefficient/specific impulse of PDRE is a function of the nozzle contraction/expansion ratio and the operating frequency. The relationship between the nozzle contraction ratio and the operation frequency is obtained by introducing the duty ratio, by which the key problem in the theoretical design can be solved. Therefore, the performance of PDRE can be accessed to guide the preliminary shape design of nozzle conveniently and quickly. The higher the operating frequency of PDRE is, the smaller the nozzle contraction ratio should be. Besides, the lower the ambient pressure is, the larger the expansion ratio of the nozzle should be. When the ambient pressure is 1.013 × 105 Pa, the optimal expansion ratio will be less than 2.26. When the ambient pressure is reduced to vacuum, the extremum of the optimal thrust coefficient is 2.236 9, and the extremum of the specific impulse is 321.01 s. The results of the improved model are verified by numerical simulation.