咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Short Term Wind Speed Predicti... 收藏

Short Term Wind Speed Prediction Using Multiple Kernel Pseudo Inverse Neural Network

Short Term Wind Speed Prediction Using Multiple Kernel Pseudo Inverse Neural Network

作     者:S.P.Mishra P.K.Dash 

作者机构:Multi-disciplinary Research Centre (MDRC)Department of Electrical EngineeringSiksha "O" Anusandhan University 

出 版 物:《International Journal of Automation and computing》 (国际自动化与计算杂志(英文版))

年 卷 期:2018年第15卷第1期

页      面:66-83页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0807[工学-动力工程及工程热物理] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Wind speed prediction pseudo inverse neural network kernel ridge regression nonlinear kernels firefly optimizatiotl. 

摘      要:An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo inverse neural networks eliminates the trial and error approach of choosing the number of hidden layer neurons and their activation functions. The robustness of the proposed method has been validated in comparison with other models such as pseudo inverse radial basis function (PIRBF) and Legendre tanh activation function based neural network, i.e., PILNNT, whose input weights to the hidden layer weights are optimized using an adaptive firefly algorithm, i.e., FFA. However, since the individual kernel functions based KRPINN may not be able to produce accurate forecasts under chaotically varying wind speed conditions, a linear combination of individual kernel functions is used to build the multi kernel ridge pseudo inverse neural network (MK-RPINN) for providing improved forecasting accuracy, generalization, and stability of the wind speed prediction model. Several case studies have been presented to validate the accuracy of the short-term wind speed prediction models using the real world wind speed data from a wind farm in the Wyoming State of USA over time horizons varying from 10 minutes to 5 hours.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分