咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Evolutionary significance of s... 收藏

Evolutionary significance of selected EDAR variants in Tibetan high-altitude adaptations

Evolutionary significance of selected EDAR variants in Tibetan high-altitude adaptations

作     者:Jianming Shao Muhammad Sohail Raza Basang Zhuoma Changqing Zeng 

作者机构:CAS Key Laboratory of Genomic and Precision Medicine Beijing Institute of Genomics Chinese Academy of Sciences Beijing 100101 China University of Chinese Academy of Sciences Beijing 100049 China The Innovation Center of Excellence on Science and Education of Life Sciences Chinese Academy of Sciences Beijing 100049 China Collaborative Innovation Center of Genetics and Development Shanghai 200438 China Medical College of Tibet University Lhasa 850002 China 

出 版 物:《Science China(Life Sciences)》 (中国科学(生命科学英文版))

年 卷 期:2018年第61卷第1期

页      面:68-78页

核心收录:

学科分类:0710[理学-生物学] 0830[工学-环境科学与工程(可授工学、理学、农学学位)] 07[理学] 071007[理学-遗传学] 

基  金:supported by the National Natural Science Foundation of China (91131905, 30890030) Strategic Priority Research Program of the Chinese Academy of Sciences (XDB13020500) Weng Hongwu Original Scientific Research Foundation, Peking University 

主  题:进化起源 改编 西藏 变体 血小板计数 环境挑战 组织缺氧 候选人 

摘      要:Humans have been exposed to many environmental challenges since their evolutionary origins in Africa and subsequent migrations to the rest of the world. A severe environmental challenge to human migrants was hypoxia caused by low barometric oxygen pressure at high altitudes. Several genome-wide scans have elucidated the genetic basis of human high-altitude ***, the dearth of functional variant information has led to the successful association of only a few candidate genes. In the present study, we employed a candidate gene approach and re-sequenced the EDAR locus in 45 Tibetan individuals to identify mutations involved in hypoxia adaptation. We identified 10 and five quantitative trait-associated mutations for oxygen saturation (SaO_2) and blood platelet count, respectively, at the EDAR locus. Among these, rs10865026 and rs3749110 (associated with SaO_2 and platelet count, respectively) were identified as functional candidate targets. These data demonstrate that EDAR has undergone natural selection in recent human history and indicate an important role of EDAR variants in Tibetan high-altitude adaptations.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分