基于ME-PGNMF的异常流量检测方法
Abnormal Traffic Detection Method Based on ME-PGNMF作者机构:火箭军工程大学信息工程系西安710025
出 版 物:《计算机工程》 (Computer Engineering)
年 卷 期:2018年第44卷第1期
页 面:165-170页
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 081201[工学-计算机系统结构] 0812[工学-计算机科学与技术(可授工学、理学学位)]
摘 要:由于部分网络异常对流量变化影响不明显,流量分析难以发现此类异常。传统基于主成分分析的网络异常流量检测方法追求全局最优解,对局部特征提取不充分,导致对连续异常不敏感,降低了异常流量的检测精度,且物理意义不明确。针对上述问题,在多维信息熵的基础上,提出梯度投影非负矩阵分解异常流量检测方法。将流量数据处理为多维特征熵矩阵,用梯度投影非负矩阵分解方法重构多维熵矩阵,分离出正常和异常子空间,采用多元统计过程控制方法中的Q图检测异常。实验结果表明,与以流量分析为基础的主成分分析方法、传统非负矩阵分解方法相比,该方法能更快、更准确地检测出连续异常,对流量变化不敏感的低速分布式拒绝服务攻击检测效果明显提高,对蠕虫攻击更加敏感。