Complementary Inequalities to Improved AM-GM Inequality
Complementary Inequalities to Improved AM-GM Inequality作者机构:Department of Mathematics Mashhad Branch Islamic Azad University Mashhad Iran
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2017年第33卷第12期
页 面:1609-1616页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
主 题:Operator inequalities positive linear maps operator norm Kantorovich inequality Wielandt inequality
摘 要:Following an idea of Lin, we prove that if A and B are two positive operators such that 0 〈 mI 〈 A 〈 m'I ≤ M'I ≤B 〈 MI, then Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2Ф^2(A#B),and Ф^2(A+B/2)≤K^2(h)/(1+(logM'/m')^2/8)^2(Ф(A)#Ф(B))^2,where K(h) = (h+1)2 /4h and h = M and Ф is a positive unital linear map.