Boundedness of Hausdorff operators on the power weighted Hardy spaces
Boundedness of Hausdorff operators on the power weighted Hardy spaces作者机构:Department of Mathematics Zhejiang Normal University Jinhua 321004 China
出 版 物:《Applied Mathematics(A Journal of Chinese Universities)》 (高校应用数学学报(英文版)(B辑))
年 卷 期:2017年第32卷第4期
页 面:462-476页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by the National Natural Science Foundation of China(11671363 11471288)
主 题:Hausdorff operator Hardy space power weight
摘 要:In this paper, we consider the two-dimensional Hausdorff operators on the power weighted Hardy space H;(R;) ( -1 ≤α≤0), defined by H;f(x)=∫R;Φ(u)f(A(u)x)du,where Φ∈L;oc;(R;),A(u) = (α;(u));is a 2×2 matrix, and each α;is a *** obtain that HΦ,A is bounded from H;(R;) ( -1≤α≤0) to itself, if∫R2|Φ(u)‖det A;(u)|‖A(u)‖;ln(1+‖A;(u)‖;/|det A;(u)|)du∞.This result improves some known theorems, and in some sense it is sharp.