Complex Behavior in a Selective Aging Neuron Model Based on Small World Networks
Complex Behavior in a Selective Aging Neuron Model Based on Small World Networks作者机构:Department of Physics Nankai University Tianjin 300071 China
出 版 物:《Communications in Theoretical Physics》 (理论物理通讯(英文版))
年 卷 期:2008年第49卷第2期
页 面:409-413页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:National Natural Science Foundation of China under Grant No.10675060
主 题:selective aging self-organized criticality small world networks finite-size-scaling analysis power-law
摘 要:Complex behavior in a selective aging simple neuron model based on small world networks is investigated. The basic elements of the model are endowed with the main features of a neuron function. The structure of the selective aging neuron model is discussed. We also give some properties of the new network and find that the neuron model displays a power-law behavior. If the brain network is small world-like network, the mean avalanche size is almost the same unless the aging parameter is big enough.