Partial energies monotonicity and holomorphicity of Hermitian pluriharmonic maps
Partial energies monotonicity and holomorphicity of Hermitian pluriharmonic maps作者机构:School of Mathematical SciencesFudan University Key Laboratory of Mathematics for Nonlinear SciencesMinistry of EducationFudan University College of Mathematics and Information ScienceXinyang Normal University
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2013年第56卷第5期
页 面:1019-1032页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by National Natural Science Foundation of China(Grant Nos.11271071,11201400,10971029 and 11026062) Project of Henan Provincial Department of Education(Grant No.2011A110015) Talent Youth Teacher Fund of Xinyang Normal University
主 题:stress energy tensor monotonicity formula Hermitian pluriharmonic map holomorphic map
摘 要:In this paper, we introduce the notion of Hermitian pluriharmonic maps from Hermitian manifold into Kiihler manifold. Assuming the domain manifolds possess some special exhaustion functions and the vecotor field V = JMδJM satisfies some decay conditions, we use stress-energy tensors to establish some monotonicity formulas of partial energies of Hermitian pluriharmonic maps. These monotonicity inequalities enable us to derive some holomorphicity for these Hermitian pluriharmonic maps.