The inviscid limit for the Landau-Lifshitz-Gilbert equation in the critical Besov space
The inviscid limit for the Landau-Lifshitz-Gilbert equation in the critical Besov space作者机构:School of Mathematical Sciences Monash University School of Statistics and Mathematics Central University of Finance and Economics
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2017年第60卷第11期
页 面:2155-2172页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by Australian Research Council Discovery Project (Grant No. DP170101060) National Natural Science Foundation of China (Grant No. 11201498) the China Scholarship Council (Grant No. 201606495010)
主 题:Landau Lifshitz Gilbert equation Schrdinger maps inviscid limit critical Besov space
摘 要:We prove that in dimensions three and higher the Landau-Lifshitz-Gilbert equation with small initial data in the critical Besov space is globally well-posed in a uniform way with respect to the Gilbert damping parameter. Then we show that the global solution converges to that of the Schr¨odinger maps in the natural space as the Gilbert damping term vanishes. The proof is based on some studies on the derivative Ginzburg-Landau equations.