Voter model in a random environment in Zd
Voter model in a random environment in Zd作者机构:School of Mathematical Sciences Peking University Beijing 100871 China Center for Statistical Science Peking University Beijing 100871 China
出 版 物:《Frontiers of Mathematics in China》 (中国高等学校学术文摘·数学(英文))
年 卷 期:2012年第7卷第5期
页 面:895-905页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
主 题:Voter model random walk random environment duality
摘 要:We consider the voter model with flip rates determined by {ue, e ∈ Ed}, where Ed is the set of all non-oriented nearest-neighbour edges in the Euclidean lattice Zd. Suppose that {ue, e ∈ Ed} are independent and identically distributed (i.i.d.) random variables satisfying ue ≥ 1. We prove that when d = 2, almost surely for all random environments, the voter model has only two extremal invariant measures: δ0 and δ1.