基于微粒群算法与模拟退火算法的协同进化方法
A Cooperative Evolutionary Algorithm Based on Particle Swarm Optimization and Simulated Annealing Algorithm作者机构:太原科技大学仿真与计算机应用研究所太原030024
出 版 物:《自动化学报》 (Acta Automatica Sinica)
年 卷 期:2006年第32卷第4期
页 面:630-635页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
摘 要:提出了一种基于模拟退火与微粒群算法的协同进化方法,利用了微粒群算法的易实现性、局部快速收敛性以及模拟退火算法的全局收敛性.通过两种算法的协同搜索,可以有效克服微粒群算法的早熟收敛.仿真结果表明,本文的协同进化方法不仅具有较好的全局收敛性能,而且具有较快的收敛速度.文章从理论上证明了该方法以概率1收敛于全局最优解.