Wright-Fisher-like models with constant population size on average
Wright-Fisher-like models with constant population size on average作者机构:Laboratoire de Physique Theorique et Modelisation CNRS-UMR 8089 et Universite de Cergy-Pontoise 2 Avenue Adolphe Chauvin 95302 Cergy-Pontoise France
出 版 物:《International Journal of Biomathematics》 (生物数学学报(英文版))
年 卷 期:2017年第10卷第6期
页 面:51-72页
核心收录:
学科分类:080903[工学-微电子学与固体电子学] 07[理学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 070102[理学-计算数学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:Chaire Modelisation mathematique et biodiversite Labex MME-DII Center of Excellence (Modeles mathematiques et economiques de la dynamique, de l'incertitude et des interactions) [ANR-11-LABX-002301]
主 题:Markov chain population dynamics Wright-Fisher-like models constant pop-ulation size on average critical Galton-Watson process extinction/fixation.
摘 要:We first recall some basic facts from the theory of discrete-time Markov chains arising from two types neutral and non-neutral evolution models of population genetics with constant size. We then define and analyze a version of such models whose fluctuating total population size is conserved on average only. In our model, the population of interest is seen as being embedded in a frame process which is a critical Galton Watson process. In this context, we address problems such as extinction, fixation, size of the population at fixation and survival probability to a bottleneck effect of the environment.