RECURSIVE INTEGRAL METHOD FOR THE NONLINEAR NON-SELFADJOINT TRANSMISSION EIGENVALUE PROBLEM
RECURSIVE INTEGRAL METHOD FOR THE NONLINEAR NON-SELFADJOINT TRANSMISSION EIGENVALUE PROBLEM作者机构:LSEC NCMIS Institute of Computational Mathematics Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100190 China
出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))
年 卷 期:2017年第35卷第6期
页 面:828-838页
核心收录:
学科分类:07[理学] 08[工学] 070102[理学-计算数学] 080101[工学-一般力学与力学基础] 0701[理学-数学] 0801[工学-力学(可授工学、理学学位)]
基 金:国家自然科学基金 the Special Funds for National Basic Research Program of China (973 Program the Special Funds for National Basic Research Program of China (863 Program) the national Center for Mathematics and Interdisciplinary Science, CAS
主 题:Transmission eigenvalue problem Nonlinear eigenvalue problem Contour integrals.
摘 要:The transmission eigenvalue problem is an eigenvalue problem that arises in the scatter- ing of time-harmonic waves by an inhomogeneous medium of compact support. Based on a fourth order formulation, the transmission eigenvalue problem is discretized by the Mor- ley element. For the resulting quadratic eigenvalue problem, a recursive integral method is used to compute real and complex eigenvalues in prescribed regions in the complex plane. Numerical examples are presented to demonstrate the effectiveness of the proposed method.