咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Quantitative Poincar recurren... 收藏

Quantitative Poincar recurrence in continued fraction dynamical system

Quantitative Poincar recurrence in continued fraction dynamical system

作     者:PENG Li TAN Bo WANG BaoWei 

作者机构:School of Mathematics and StatisticsHuazhong University of Science and TechnologyWuhan 430074China 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2012年第55卷第1期

页      面:131-140页

核心收录:

学科分类:090603[农学-临床兽医学] 07[理学] 09[农学] 0906[农学-兽医学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:supported by National Natural Science Foundation of China (Grant Nos.10631040 10901066) 

主  题:recurrence continued fraction Hausdorff dimension 

摘      要:Let T : X → X be a transformation. For any x C [0, 1) and r 〉 O, the recurrence time Tr(x) of x under T in its r-neighborhood is defined as Tr(X) = inf{k ≥ 1: d(Tk(x),x) 〈 r}.For 0 ≤ α ≤ β ∞ co, let E(α,β) be the set of points with prescribed recurrence time as follows E(α,β)={x∈X:lim inf r→0 logTr(x)/-logr=α,lim sup r→0 logTr(x)/-logr=β}.In this note, we consider the Gauss transformation T on [0, 1), and determine the size of E(α,β)by showing that dimH E(α,β) = 1 no matter what a and/~ are. This can be compared with Feng and Wu's result [Nonlinearity, 14 (2001), 81-85] on the symbolic space.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分