咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Nonlinear vibration analysis o... 收藏

Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory

Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory

作     者:M.Faraji Oskouie R.Ansari F.Sadeghi 

作者机构:Department of Mechanical EngineeringUniversity of Guilan 

出 版 物:《Acta Mechanica Solida Sinica》 (固体力学学报(英文版))

年 卷 期:2017年第30卷第4期

页      面:416-424页

核心收录:

学科分类:08[工学] 0835[工学-软件工程] 0802[工学-机械工程] 080101[工学-一般力学与力学基础] 080201[工学-机械制造及其自动化] 0801[工学-力学(可授工学、理学学位)] 

主  题:Fractional calculus Viscoelastic nanobeam Nonlinear vibrations 

摘      要:The nonlinear vibrations of viscoelastic Euler-Bernoulli nanobeams are studied using the fractional calculus and the Gurtin-Murdoch theory. Employing Hamilton's principle, the governing equation considering surface effects is derived. The fractional integro-partial differential governing equation is first converted into a fractional-ordinary differential equation in the time domain using the Galerkin scheme. Thereafter, the set of nonlinear fractional time-dependent equations expressed in a state-space form is solved using the predictorcorrector method. Finally, the effects of initial displacement, fractional derivative order, viscoelasticity coefficient, surface parameters and thickness-to-length ratio on the nonlinear time response of simply-supported and clamped-free silicon viscoelastic nanobeams are investigated.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分