Triangular domain extension of linear Bernstein-like trigonometric polynomial basis
Triangular domain extension of linear Bernstein-like trigonometric polynomial basis作者机构:Department of Mathematics Zhejiang University Hangzhou 310027 China
出 版 物:《Journal of Zhejiang University-Science C(Computers and Electronics)》 (浙江大学学报C辑(计算机与电子(英文版))
年 卷 期:2010年第11卷第5期
页 面:356-364页
核心收录:
学科分类:07[理学] 081203[工学-计算机应用技术] 08[工学] 070104[理学-应用数学] 0835[工学-软件工程] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by the National Natural Science Foundation of China (Nos.60773179,60933008,and 60970079) the National Basic Research Program (973) of China (No.2004CB318000) the China Hungary Joint Project (No.CHN21/2006)
主 题:Computer aided geometric design(CAGD) Free form modeling Trigonometric polynomial Basis function Bernstein basis Triangular domain
摘 要:In computer aided geometric design(CAGD),the Bernstein-Bézier system for polynomial space including the triangular domain is an important tool for modeling free form *** Bernstein-like bases for other spaces(trigonometric polynomial,hyperbolic polynomial,or blended space) has also been ***,none of them was extended to the triangular *** this paper,we extend the linear trigonometric polynomial basis to the triangular domain and obtain a new Bernstein-like basis,which is linearly independent and satisfies positivity,partition of unity,symmetry,and boundary *** prove some properties of the corresponding surfaces,including differentiation,subdivision,convex hull,and so *** applications are shown.