Embedding compact surfaces into the 3-dimensional Euclidean space with maximum symmetry
Embedding compact surfaces into the 3-dimensional Euclidean space with maximum symmetry作者机构:Jonsvannsveien 87BH0201Trondheim 7050Noway School of Mathematical SciencesPeking UniversityBeijing 100871China Mathematics SchoolJilin UniversityChangehun 130012China Dipartimento di Matematica e GeoseienzeUniversita degli Studi di TriesteTrieste 34100Italy
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2017年第60卷第9期
页 面:1599-1614页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by National Natural Science Foundation of China(Grant Nos.11371034 and 11501239)
主 题:finite group action extendable action symmetry of surface maximum order
摘 要:The symmetries of surfaces which can be embedded into the symmetries of the 3-dimensional Euclidean space R3 are easier to feel by human's intuition. We give the maximum order of finite group actions on (R3 E) among all possible embedded closed/bordered surfaces with given geometric/algebraic genus greater than 1 in R3. We also identify the topological types of the bordered surfaces realizing the maximum order, and findsimple representative embeddings for such surfaces.