咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Embedding compact surfaces int... 收藏

Embedding compact surfaces into the 3-dimensional Euclidean space with maximum symmetry

Embedding compact surfaces into the 3-dimensional Euclidean space with maximum symmetry

作     者:WANG Chao WANG ShiCheng ZHANG YiMu ZIMMERMANN Bruno 

作者机构:Jonsvannsveien 87BH0201Trondheim 7050Noway School of Mathematical SciencesPeking UniversityBeijing 100871China Mathematics SchoolJilin UniversityChangehun 130012China Dipartimento di Matematica e GeoseienzeUniversita degli Studi di TriesteTrieste 34100Italy 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2017年第60卷第9期

页      面:1599-1614页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:supported by National Natural Science Foundation of China(Grant Nos.11371034 and 11501239) 

主  题:finite group action extendable action symmetry of surface maximum order 

摘      要:The symmetries of surfaces which can be embedded into the symmetries of the 3-dimensional Euclidean space R3 are easier to feel by human's intuition. We give the maximum order of finite group actions on (R3 E) among all possible embedded closed/bordered surfaces with given geometric/algebraic genus greater than 1 in R3. We also identify the topological types of the bordered surfaces realizing the maximum order, and findsimple representative embeddings for such surfaces.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分