多种群协同进化算法优化的云存储仿真分析
Multiple population co-evolution algorithm simulation of cloud storage optimization作者机构:重庆航天职业技术学院重庆400021
出 版 物:《电子测试》 (Electronic Test)
年 卷 期:2017年第28卷第5X期
页 面:40-41,48页
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 081201[工学-计算机系统结构] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:2017年重庆市教育委员会科学技术项目(基于压缩域DCT参数特征的镜头边缘检测研究) 项目编号:KJ1728400
摘 要:云平台下大数据的极速增长,使得传统的数据存储由于时间响应慢、负载不均衡等因素,成为阻碍大数据云存储的关键技术,为了解决云平台下大数据的存储问题,提出了多种群协同进化优化算法的存储方法。该方法首先将存储分布区分割成若干个环区域,同时标记每个存储区的存储访问时间,然后将大数据的存储访问抽象为最优解问题。通过改进协同进化算法,防止粒子群早熟,采用该优化算法对大数据存储过程中的任务调度粒子群分别编码,根据微粒群不断进化和变异,迭代得到最优解,从而满足云平台下大数据存储的实际需求。利用Cloudsim搭建仿真平台,对提出的新型大数据存储方法加以评估验证,结果表明该方法不仅具有更快的响应速度,而且降低了系统能耗,提高了负载均衡度。