Theoretical calculation of the impact work in the alloying non-quenched and tempered steel
Theoretical calculation of the impact work in the alloying non-quenched and tempered steel作者机构:Department of Materials and Chemical Engineering Liaoning Institute of Technology Jinzhou China The Technical Center of Benxi Iron and Steel Group Corporation Benxi China
出 版 物:《Science China(Technological Sciences)》 (中国科学(技术科学英文版))
年 卷 期:2006年第49卷第3期
页 面:257-273页
核心收录:
学科分类:080503[工学-材料加工工程] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0802[工学-机械工程] 080201[工学-机械制造及其自动化]
基 金:This work was supported by the National Natural Science Foundation of China (Grant No. 50471022)
主 题:alloying non-quenched and tempered steel, electron structure, impact work, calculation.
摘 要:Coupled with hot-continuous rolling technology and based on the calculation of the finishing rolling impact work in the non-quenched and tempered Si-Mn steel, the calculations of the finishing rolling impact work in the alloying non-quenched and tempered steel with the elements of Cr, Ni, Mo, W, Cu, V, Nb and Ti are studied with the covalent electron number nA of the strongest bond in alloying phases, the smallest electron density difference ?ρ of phase interfaces, and the number of atom states σ (σ′) which keep the interface electron density continuous. The calculated results show that the finishing rolling impact work of the alloying non-quenched and tempered steel intensely depends on strengthening mechanisms. The solution strengthening, interface strengthening, precipita- tion strengthening of pearlite, and dispersion strengthening will result in the decrease of the finishing rolling impact work; the refinement strengthening, the precipitation strength- ening of V, Nb and Ti in α-Fe-C-V(Nb, Ti), and the residual austenite containing Ni on the boundary of α-Fe-C-Ni will increase the impact work; and the increments or decrements can be calculated with nA, ?ρ, σ (σ′) and weights of alloying elements. The calculation formulas of the finishing rolling impact work in this paper are intergraded with the sug- gested ones of the finishing rolling tensile strength, yield strength, and elongation of the non-quenched and tempered steel. The calculated results agree well with the measured ones.