GENERAL DECAY OF SOLUTIONS FOR A VISCOELASTIC EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS
GENERAL DECAY OF SOLUTIONS FOR A VISCOELASTIC EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS作者机构:General Education Center National Taipei University of Technology Taipei 106 China
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2011年第31卷第4期
页 面:1436-1448页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0704[理学-天文学] 0701[理学-数学]
主 题:global existence asymptotic behavior general decay
摘 要:The initial boundary value problem for a viscoelastic equation | u t | ρ u tt △u-△u tt + t 0 g(ts)△u(s)ds + | u t | m u t = | u | p u in a bounded domain is considered, where ρ, m, p 〉 0 and g is a nonnegative and decaying function. The general uniform decay of solution energy is discussed under some conditions on the relaxation function g and the initial data by adopting the method of [14, 15, 19]. This work generalizes and improves earlier results in the literature.