咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >H^1-ESTIMATES OF LITTLEWOOD-PA... 收藏

H^1-ESTIMATES OF LITTLEWOOD-PALEY AND LUSIN FUNCTIONS FOR JACOBI ANALYSIS

H^1-ESTIMATES OF LITTLEWOOD-PALEY AND LUSIN FUNCTIONS FOR JACOBI ANALYSIS

作     者:Takeshi Kawazoe 

作者机构:Department of Mathematics Keio University at Fujisawa 5322 EndoFujisawaKanagawa 252-8520 Japan 

出 版 物:《Analysis in Theory and Applications》 (分析理论与应用(英文刊))

年 卷 期:2009年第25卷第3期

页      面:201-229页

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Partly supported by Grant-in-Aid for Scientific Research (C)  No. 20540188  Japan Society for the Promotion of Science 

主  题:Hardy space Jacobi analysis Littlewood-Paleyfunction Lusinfunction 

摘      要:For a ≥β≥ -1/2 let △(x) = (2shx)^2α+1 (2chx)2β+1 denote the weight function on R+ and L^1 (△) the space of integrable functions on R+ with respect to △(x)dx, equipped with a convolution structure. For a suitable Ф ∈ L^1 (△), we put Фt(x) = t^-1 △(x)^-1 △(x/t)Ф(x/t) for t 〉 0 and define the radial maximal operator MФ, as usual manner. We introduce a real Hardy space H^1 (△) as the set of all locally integrable functions f on R+ whose radial maximal function MФ (f) belongs to L^1 (△). In this paper we obtain a relation between H^1 (△) and H^1 (R). Indeed, we characterize H^1 (△) in terms of weighted H^1 Hardy spaces on R via the Abel transform of f. As applications of H^1 (△) and its characterization, we shall consider (H^1 (△),L^1 (△))-boundedness of some operators associated to the Poisson kernel for Jacobi analysis: the Poisson maximal operator Me, the Littlewood-Paley g-function and the Lusin area function S. They are bounded on L^p(△) for p 〉 1, but not true for p = 1. Instead, Mp, g and a modified Sa,r are bounded from H^1 (△) to L^1 (△).

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分