Highly bioactive nano-hydroxyapatite/partially stabilized zirconia ceramics
Highly bioactive nano-hydroxyapatite/partially stabilized zirconia ceramics作者机构:College of Material Science and Engineering China University of Mining and Technology Xuzhou 221007 P.R. China
出 版 物:《Journal of Bionic Engineering》 (仿生工程学报(英文版))
年 卷 期:2004年第1卷第4期
页 面:215-220页
核心收录:
学科分类:07[理学] 070205[理学-凝聚态物理] 08[工学] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0702[理学-物理学]
基 金:Foundation of the School of Material Science and Engineering China University of Mining and Technology
主 题:bioactive ceramics hydroxyapatite PSZ nanoindentation mechanical properties 1
摘 要:Nanocrystalline hydroxyapatite (HA) powders have been synthesized by precipitation using Ca(NO3)2 4H2O and? (NH4)2 HPO4 at room temperature and atmospheric pressure. Nanocomposites of HA and partially stabilized zirconia (HA/PSZ) were sintered at atmospheric pressure and 1300 for 2h in air. The preparation techniques, structure and me- chanical properties of these materials were characterized. The addition of nanosized PSZ reinforcing phase to HA may lead to an improvement of the macro and micro mechanical properties and not affect its biocompatibility and bioactivity. The bending strength, fracture toughness and nano-hardness were near to or greater than those for human cortical bone and human tooth (dentine and enamel). The composite was incubated in a fresh human plasma which confirmed the bioactivity of nanosized HA/PSZ materials. The bonding reaction between HA/PSZ ceramic and the plasma proteins was found, and he- matopoietic cell phosphatase (HCP) layers formed on surface of each composite incubated in human plasma for two weeks. The diameter of a single HCP globule was less than 100 nm. Furthermore, the precipitating mechanism investigation was carried out through a comparative experiment in this paper.