Solution to an Extremal Problem on Bigraphic Pairs with a Z3-connected Realization
Solution to an Extremal Problem on Bigraphic Pairs with a Z_3-connected Realization作者机构:Department of MathematicsCollege of Information Science and TechnologyHainan UniversityHaikou 570228P.R.China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2017年第33卷第8期
页 面:1131-1153页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Supported by National Natural Science Foundation of China(Grant No.11561017) Natural Science Foundation of Hainan Province(Grant No.2016CXTD004)
主 题:Bigraphic pair Z3-connected realization group connectivity
摘 要:Let S = (a1,...,am;b1,...,bn), where a1,...,am and b1,...,bn are two nonincreasing sequences of nonnegative integers. The pair S= (a1,..., am; b1,..., bn) is said to be a bigraphic pair if there is a simple bipartite graph G = (X ∪ Y, E) such that a1,…, am and b1,..., bn are the degrees of the vertices in X and Y, respectively. Let Z3 be the cyclic group of order 3. Define σ(Z3, m, n) to be the minimum integer k such that every bigraphic pair S = (a1,..., am; b1,..., bn) with am, b ≥ 2 and σ(S) = a1 + ... + am ≥ k has a Z3-connected realization. For n = m, Yin [Discrete Math., 339, 2018-2026 (2016)] recently determined the values of σ(Z3,m,m) for m ≥ 4. In this paper, we completely determine the values of σ(Z3, m, n) for m ≥ n ≥4.