Inflatable Wing Design Parameter Optimization Using Orthogonal Testing and Support Vector Machines
Inflatable Wing Design Parameter Optimization Using Orthogonal Testing and Support Vector Machines作者机构:School of Astronautics Beihang University Beijing 100191 China
出 版 物:《Chinese Journal of Aeronautics》 (中国航空学报(英文版))
年 卷 期:2012年第25卷第6期
页 面:887-895页
核心收录:
学科分类:1008[医学-中药学(可授医学、理学学位)] 12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 10[医学]
基 金:China Space Foundation (CASC0105)
主 题:inflatable wing orthogonal test design parameter support vector machines optimization
摘 要:The robust parameter design method is a traditional approach to robust experimental design that seeks to obtain the optimal combination of factors/levels. To overcome some of the defects of the inflatable wing parameter design method, this paper proposes an optimization design scheme based on orthogonal testing and support vector machines (SVMs). Orthogonal testing design is used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iterations and improve the identification accuracy and efficiency. Orthogonal tests consisting of three factors and three levels are designed to analyze the parameters of pressure, uniform applied load and the number of chambers that affect the bending response of inflatable wings. An SVM intelligent model is established and limited orthogonal test swatches are studied. Thus, the precise relationships between each parameter and product quality features, as well the signal-to-noise ratio (SNR), can be obtained. This can guide general technological design optimization.