咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Harnack Inequality and Applica... 收藏

Harnack Inequality and Applications for Stochastic Retarded Differential Equations Driven by Fractional Brownian Motion

Harnack Inequality and Applications for Stochastic Retarded Differential Equations Driven by Fractional Brownian Motion

作     者:LIU Min XU Liping LI Zhi CHEN Zhong 

作者机构:School of Information and MathematicsYangtze UniversityJingzhou 434023China 

出 版 物:《Journal of Partial Differential Equations》 (偏微分方程(英文版))

年 卷 期:2017年第30卷第1期

页      面:84-94页

核心收录:

学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学] 

基  金:This research is partially supported by the NNSF of China (No. 61273179) and Natural Science Foundation of Hubei Province (No. 2016CFB479) 

主  题:Fractional Brownian motion Harnack inequality strong Feller property. 

摘      要:In this paper, by using a semimartingale approximation of a fractional stochastic integration, the global Harnack inequalities for stochastic retarded differential equations driven by fractional Brownian motion with Hurst parameter 0 〈 H 〈 1 are established. As applications, strong Feller property, log-Harnack inequality and entropycost inequality are given.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分