Harnack Inequality and Applications for Stochastic Retarded Differential Equations Driven by Fractional Brownian Motion
Harnack Inequality and Applications for Stochastic Retarded Differential Equations Driven by Fractional Brownian Motion作者机构:School of Information and MathematicsYangtze UniversityJingzhou 434023China
出 版 物:《Journal of Partial Differential Equations》 (偏微分方程(英文版))
年 卷 期:2017年第30卷第1期
页 面:84-94页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
主 题:Fractional Brownian motion Harnack inequality strong Feller property.
摘 要:In this paper, by using a semimartingale approximation of a fractional stochastic integration, the global Harnack inequalities for stochastic retarded differential equations driven by fractional Brownian motion with Hurst parameter 0 〈 H 〈 1 are established. As applications, strong Feller property, log-Harnack inequality and entropycost inequality are given.