间距判别投影及其在表情识别中的应用
Margin discriminant projection and its application in expression recognition作者机构:华中师范大学计算机学院武汉430079
出 版 物:《计算机应用》 (journal of Computer Applications)
年 卷 期:2017年第37卷第5期
页 面:1413-1418页
学科分类:1305[艺术学-设计学(可授艺术学、工学学位)] 13[艺术学] 081104[工学-模式识别与智能系统] 08[工学] 0804[工学-仪器科学与技术] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程]
主 题:降维 间距 判别投影 类间离散度 类内离散度 表情识别
摘 要:针对全局降维方法判别信息不足,局部降维方法对邻域关系的判定存在缺陷的问题,提出一种新的基于间距的降维方法——间距判别投影(MDP)。首先,根据类的中心均值的异类近邻关系定义描述类边缘的边界向量;在这个基础上,MDP重新定义类间离散度矩阵,同时,使用全局的方法构造类内离散度矩阵;然后,MDP借鉴判别分析思想建立衡量类间距的准则,并通过类间距最大化增强样本在投影空间中的可分性。对MDP在人脸表情数据库JAFFE和Extended Cohn-Kanade上进行表情识别实验,并且跟传统的降维方法主成分分析(PCA)、最大间距准则(MMC)和边界Fisher分析(MFA)进行对比,实验结果表明,所提算法能够有效提取更具区分性的低维特征,比其他几种方法分类精度更高。