Periodic Boundary Conditions for Finite-Differentiation-Method Fast-Fourier-Transform Micromagnetics
Periodic Boundary Conditions for Finite-Differentiation-Method Fast-Fourier-Transform Micromagnetics作者机构:Key Laboratory of Advanced Materials(MOE)School of Materials Science and EngineeringTsinghua UniversityBeijing 100084
出 版 物:《Chinese Physics Letters》 (中国物理快报(英文版))
年 卷 期:2017年第34卷第4期
页 面:97-100页
核心收录:
学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学]
基 金:Supported by the National Natural Science Foundation of China under Grant Nos 51171086 and 51371101
主 题:PBC FDM Periodic Boundary Conditions for Finite-Differentiation-Method Fast-Fourier-Transform Micromagnetics FFT
摘 要:We describe an accurate periodic boundary condition (PBC) called the symmetric PBC in the calculation of the magnetostatie interaction field in the finite-differentiation-method fast-Fourier-transform (FDM-FFT) micromagneties. The micromagnetic cells in the regular mesh used by the FDM-FFT method are finite-sized elements, but not geometrical points. Therefore, the key PBC operations for FDM-FFT methods are splitting and relocating the micromagnetic cell surfaces to stay symmetrically inside the box of half-total sizes with respect to the origin. The properties of the demagnetizing matrix of the split micromagnetic cells are discussed, and the sum rules of demagnetizing matrix are fulfilled by the symmetric PBC.