基于微博文本的词对主题演化模型
Biterm topic evolution model of microblog作者机构:辽宁工程技术大学软件学院辽宁葫芦岛125105
出 版 物:《计算机应用》 (journal of Computer Applications)
年 卷 期:2017年第37卷第5期
页 面:1407-1412页
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:特征值稀疏 主题演化模型 动态演化 Gibbs采样 微博
摘 要:针对传统主题模型忽略了微博短文本和文本动态演化的问题,提出了基于微博文本的词对主题演化(BToT)模型,并根据所提模型对数据集进行主题演化分析。BToT模型在文本生成过程中引入连续的时间变量具体描述时间维度上的主题动态演化,同时在文档中构成主题共享的词对结构,扩充了短文本特征。采用Gibbs采样方法对BToT参数进行估计,根据获得的主题-时间分布参数对主题进行演化分析。在真实微博数据集上进行验证,结果表明,BToT模型可以描述微博数据集中潜在的主题演化规律,获得的困惑度评价系数低于潜在狄利克雷分配(LDA)、词对主题模型(BTM)和主题演化模型(ToT)。