Source characteristics of O_3 and CO_2 at Mt. Waliguan Observatory,Tibetan Plateau implied by using ~7Be and ^(210)Pb
Source characteristics of O_3 and CO_2 at Mt. Waliguan Observatory,Tibetan Plateau implied by using ~7Be and ^(210)Pb作者机构:Key Laboratory of Atmospheric Chemistry of China Meteorological Administration Chinese Academy of Meteorological Sciences Beijing 100081 China State Key Laboratory of Environment Geochemistry Institute of Geochemistry Chinese Academy of Sciences Guiyang 550002 China
出 版 物:《Science China Earth Sciences》 (中国科学(地球科学英文版))
年 卷 期:2011年第54卷第4期
页 面:550-560页
核心收录:
学科分类:081704[工学-应用化学] 07[理学] 08[工学] 0817[工学-化学工程与技术] 070401[理学-天体物理] 0703[理学-化学] 070301[理学-无机化学] 0704[理学-天文学]
基 金:supported by National Natural Science Foundation of China (Grant Nos.40575013 40175032 and 40830102)
主 题:Differential Concentrations in Contiguous Weeks (DCCW) Continent Boundary Layer (CBL) emission downward transport from stratosphere natural trace WLG
摘 要:The weekly averages of near-surface ^7Be, ^210pb, 03, and CO2 concentrations at the Global Atmospheric Watch Observatory, Mt. Waliguan (101.98°E, 36.287°N, 3810 m a.s.l.), from October 2002 to January 2004 are presented. With the establishment of the new datasets of DCCW (Differential Concentrations in Contiguous Weeks) of ^7Be,^210pb, and O3, CO2 (△^7Be, △^210pb, △O3, △CO2, respectively, the impacts of upper-level downward transports and land-surface emissions on O3 and CO2 concentrations are implied by ^7Be and ^210pb being as independent tracers. The relations among △^7Be, △^210pb, and △O3, △CO2 are examined statistically and compared. The results indicate that with the DCCWs, the interferences with the tracing significance of ^7Be and ^210Pb from the seasonal wet scavenging of atmospheric aerosol are greatly reduced, and the weighting sources of O3 or CO2 variations are more pronounced. Basically, the variability of surface O3 is controlled predominately by air mass transported from the upper atmosphere levels while the emission from the Continent Boundary Layer (CBL) has an obvious input for CO2. The relation between △^210pb and △O3 reflects that influences of CBL emission are generally positive/negative for surface O3 budget in summer/winter, and the relation of △^7Be and △CO2 also reveals that upper level downward transport has positive/negative inputs for CO2 in summer/winter. With the highly correlated relations between ^7Be and O3, a quantitative estimation is made of the stratospheric contributions to the budget of surface O3 at WLG: the monthly averages of stratospheric O3 range from 6 ×10^-9 to 8 ×10^-9 (volume mixing ratio) in April and from June to August, and 2 ×10^-9 to 4 ×10^-9 in the remaining months. For the ultimate sources of the baseline concentration of surface 03, which consist of only stratospheric transport and tropospheric photochemistry production, the contribution from stratospheric transport is estimated to be about 20 ×10^-9 from May