咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A WAVELET METHOD FOR THE FREDH... 收藏

A WAVELET METHOD FOR THE FREDHOLMINTEGRO-DIFFERENTIAL EQUATIONS WITH CONVOLUTION KERNEL

A WAVELET METHOD FOR THE FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH CONVOLUTION KERNEL

作     者:Xiao-qing Jin Vai-Kuong Sin(Faculty of Science and Technology, University of Macao, Macao)Jin-yun Yuan(Department of Mathematics, Universidade Federal do Parana, Curitiba, Brazil) 

作者机构:澳门大学科技学院 澳门 Universidade Federal do Parana 巴西 

出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))

年 卷 期:1999年第17卷第4期

页      面:435-440页

核心收录:

学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学] 

主  题:Fredholm integro-differential equation Kernel Wavelet transform,Toeplitz matrix Hankel matrix Sobolev spaceg PCG method. 

摘      要:We study the Fredholm integro-differential equationby the wavelet method. Here (x) is the unknown function to be found, k(y) isa convolution kernel and g(x) is a given function. Following the idea in [7], theequation is discretized with respect to two different wavelet bases. We then havetwo different linear systems. One of them is a Toeplitz-Hankel system of the form(Hn + Tn)x = b where Tn is a Toeplitz matrix and Hn is a Hankel matrix. Theother one is a system (Bn+ Cn)y= d with condition number K = O(1) after adiagonal scaling. By using the preconditioned conjugate gradient (PCG) methodwith the fast wavelet transform (FWT) and the fast iterative Toeplitz solver, wecan solve the systems in O(nlog n) operations.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分