咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Grain size refinement of magne... 收藏

Grain size refinement of magnesium composite alloys by addition of B_2O_3

Grain size refinement of magnesium composite alloys by addition of B_2O_3

作     者:卜乐平 S.TANAKA M.TSUSHIDA S.ANDO H.TONDA 

作者机构:Graduate School of Science and TechnologyKumamoto University2-39-1 KurokamiKumamoto 860-8555Japan Machinery and Electronic Engineering InstituteInner Mongolia University of AgricultureHohhot 010018China Department of materials Science and EngineeringFaculty of EngineeringKumamoyo University2-39-1 KurokamiKumamoto 860-8555Japan 

出 版 物:《中国有色金属学会会刊:英文版》 (Transactions of Nonferrous Metals Society of China)

年 卷 期:2006年第16卷第A03期

页      面:1864-1869页

核心收录:

学科分类:07[理学] 070205[理学-凝聚态物理] 0702[理学-物理学] 

主  题:应变分析 镁合金 金属化合物 金属铸造 

摘      要:The high performance magnesium alloy was investigated by adding B2O3 in magnesium and magnesium alloys. Experiments include adding B2O3 in Mg, Mg-Al and Mg-RE alloys, respectively, studying the effects of B2O3 on the microstructure, were studied measuring the change of grain size and microhardness of the materials, discussing the change of grain size, morphology and distribution. The results show that adding 3% or 6%(mass fraction) B2O3 in Mg can bring twinning in Mg, adding B2O3 in Mg-Al alloys and Mg-RE alloys can refine the alloy grain size. Adding 3%B2O3 in Mg-6Al alloys can refine the average grain size by about 5μm, with the average hardness increased by 13.3% (53.3-60.4 HV0.03); adding 6%B2O3 in Mg-6Al alloys can refine the average grain size by about 13μm, with the average hardness increased by 15.8% (53.3-61.73 HV0.03); adding 3% and 6%B2O3 into Mg-6RE alloys can refine the grain size by about 5 and 9μm, respectively, with the average hardness decreased to HV0.03 64.66 and HV0.03 57.86, respectively from HV0.03 88.57. In the Mg-6Al alloy the content of aluminum is increased, while in the Mg-6RE alloy the content of oxygen is decreased. It can be concluded that it is beneficial to develop Mg-Al-B-O particle reinforce composite alloys, and it is feasible to develop nanometer crystallization of block material by Mg-B-O-RE.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分