咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >The Characteristic Function Me... 收藏

The Characteristic Function Method and Its Application to (1 + 1)-Dimensional Dispersive Long Wave Equation

The Characteristic Function Method and Its Application to (1 + 1)-Dimensional Dispersive Long Wave Equation

作     者:Medhat M. Helal Mohammad L. Mekky Emad A. Mohamed 

作者机构:不详 

出 版 物:《Applied Mathematics》 (应用数学(英文))

年 卷 期:2012年第3卷第1期

页      面:12-18页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Characteristic Function Method Wu-Zhang Equation 

摘      要:In this paper, the characteristic function method is applied to seek traveling wave solutions of nonlinear partial differential equations in a unified way. We consider the Wu-Zhang equation (which describes (1 + 1)-dimensional disper-sive long wave). The equations governing the wave propagation consist of a pair of non linear partial differential equations. The characteristic function method reduces the system of nonlinear partial differential equations to a system of nonlinear ordinary differential equations which is solved via the shooting method, coupled with Rungekutta scheme. The results include kink-profile solitary wave solutions, periodic wave solutions and rational solutions. As an illustrative example, the properties of some soliton solutions for Wu-Zhang equation are shown by some figures.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分