咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Square-Root Dynamics of a SIR-... 收藏

Square-Root Dynamics of a SIR-Model in Fractional Order

Square-Root Dynamics of a SIR-Model in Fractional Order

作     者:Young Il Seo Anwar Zeb Gul Zaman Il Hyo Jung 

作者机构:Department of Mathematics Pusan National University Busan South Korea Department of Mathematics University of Malakand Chakdara Pakistan National Fisheries Research and Development Institute Busan South Korea 

出 版 物:《Applied Mathematics》 (应用数学(英文))

年 卷 期:2012年第3卷第12期

页      面:1882-1887页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Mathematical Model Square Root Dynamics Fractional Derivative Non-Standard Finite Difference Scheme Numerical Analysis 

摘      要:In this paper, we consider an SIR-model for which the interaction term is the square root of the susceptible and infected individuals in the form of fractional order differential equations. First the non-negative solution of the model in fractional order is presented. Then the local stability analysis of the model in fractional order is discussed. Finally, the general solutions are presented and a discrete-time finite difference scheme is constructed using the nonstandard finite difference (NSFD) method. A comparative study of the classical Runge-Kutta method and ODE45 is presented in the case of integer order derivatives. The solutions obtained are presented graphically.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分