Apelin-12 improves metabolic and functional recovery of rat heart after global ischemia
Apelin-12 improves metabolic and functional recovery of rat heart after global ischemia作者机构:不详
出 版 物:《Health》 (健康(英文))
年 卷 期:2010年第2卷第8期
页 面:927-934页
学科分类:1002[医学-临床医学] 100214[医学-肿瘤学] 10[医学]
主 题:Apelin-12 Rat Heart Ischemia/ Reperfusion Injury Energy Metabolism Cell Membrane Damage
摘 要:This work was designed to explore efficacy of apelin-12 (A-12) as a cardioprotective agent when given before ischemia or at reperfusion using the isolated working heart model. Hearts of male Wistar rats were subjected to 30-min stabilization period followed by 35-min global ischemia and 30-min reperfusion. A short-term infusion of Krebs-Henseleit buffer (KHB) con-taining A-12 (35, 70, 140, 280 or 560 ?M) was ap-plied prior to ischemia (A-12-I) or at onset of reperfusion (A-12-R). KHB infusion was used as control. A-12 infusions induced a dose-dependent increase in recovery of coronary flow, contractile and pump function during reperfu-sion, with the largest augmentation of these indices in the A-12-I group. Both A-12 groups exhibited a significant reduction of LV diastolic pressure rise during reperfusion compared with control. Enhanced functional recovery in the A-12-I group was combined with a decrease in LDH leakage in perfusate on early reperfusion (by 36% vs. control, p 0.05). Preischemic infusion of 140 ?M A-12 markedly increased myocardial ATP content, enhanced preservation of the total adenine nucleotide pool and improved recovery of the energy charge in reperfused hearts. There was a trend towards increase in myocardial phosphocreatine by the end of re- perfusion in the A-12-I group;however this benefit did not reach statistical significance. At the end of reperfusion, myocardial lactate and lactate/pyruvate ratio were on average 5-fold lower in A-12-I treated hearts compared with control ones and did not differ significantly from the initial values. Therefore, improved cardiac dysfunction after I/R injury and less cell mem-brane damage induced by A-12 are associated with maintaining high energy phosphates, particularly ATP, in reperfused myocardium. Changes in energy metabolism may play a role in mechanisms of cardioprotection afforded by A-12 during I/R stress.