咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Distributed Sparse Signal Esti... 收藏

Distributed Sparse Signal Estimation in Sensor Networks Using H_∞-Consensus Filtering

Distributed Sparse Signal Estimation in Sensor Networks Using H∞-Consensus Filtering

作     者:Haiyang Yu Yisha Liu Wei Wang 

作者机构:Research Center of Information and ControlDalian University of Technology School of Information Science and TechnologyDalian Maritime University 

出 版 物:《IEEE/CAA Journal of Automatica Sinica》 (自动化学报(英文版))

年 卷 期:2014年第1卷第2期

页      面:149-154页

核心收录:

学科分类:07[理学] 080202[工学-机械电子工程] 08[工学] 070104[理学-应用数学] 0802[工学-机械工程] 081101[工学-控制理论与控制工程] 0701[理学-数学] 0811[工学-控制科学与工程] 

基  金:National Natural Science Foundation of China  (6130512) 

主  题:Kalman filters Sensors Estimation Mathematical model Sparse matrices Covariance matrices 

摘      要:This paper is concerned with the sparse signal recovery problem in sensor networks, and the main purpose is to design a filter for each sensor node to estimate a sparse signal sequence using the measurements distributed over the whole network. A so-called 1-regularized H_∞filter is established at first by introducing a pseudo-measurement equation, and the necessary and sufficient condition for existence of this filter is derived by means of Krein space Kalman *** embedding a high-pass consensus filter into 1-regularized H∞filter in information form, a distributed filtering algorithm is developed, which ensures that all node filters can reach a consensus on the estimates of sparse signals asymptotically and satisfy the prescribed H∞performance constraint. Finally, a numerical example is provided to demonstrate effectiveness and applicability of the proposed method.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分