Optimization of flow control devices in a tenstrand billet caster tundish
Optimization of flow control devices in a tenstrand billet caster tundish作者机构:School of Metallurgy Northeastern University
出 版 物:《China Foundry》 (中国铸造(英文版))
年 卷 期:2016年第13卷第6期
页 面:414-421页
核心收录:
学科分类:08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程]
基 金:supported by the National Natural Science Foundation of China(No.51474059,No.51204042) the Program for Liaoning Excellent Talents in University(No.LJQ2014031) the Fundamental Research Funds for the Central Universities(No.N140205003)
主 题:billet continuous casting ten-strand caster tundish flow control device physical modeling plant trials
摘 要:The physical model of a ten-strand billet caster tundish was established to study the effects of various flow control devices on the melt flow. Before and after the optimization of the melt flow, the inclusion removal in the tundish was evaluated by plant trials. The physical modeling results show that when combined with a baffle, the turbulence inhibitor, instead of the impact pad, can significantly improve the melt flow. A turbulence inhibitor with a longer length of inner cavity and without an extending lip at the top of the sidewall seems to be efficient in the improvement of the melt flow. Various types and designs of baffles all influence the flow characteristics significantly. The V type baffles are better than the straight baffles for flow control. The V type baffle with four inclined holes at the sidewall away from the stopper rods is better in melt flow control than the one with one inclined hole at each sidewall. The combination of a well-designed turbulence inhibitor and an appropriate baffle shows high efficiency on improving the melt flow and an optimal proposal was presented. Plant trials indicate that, compared with the original tundish configuration in prototype, the inclusions reduce by 42% and the inclusion distribution of individual strands is more similar with the optimal one. The optimal tundish configuration effectively improves the melt flow in the ten-strand billet caster tundish.