咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Controlling the uncertainty in... 收藏

Controlling the uncertainty in reservoir stochastic simulation

Controlling the uncertainty in reservoir stochastic simulation

作     者:Cui Yong Chi Bo Chen Guo Ouyang Cheng Xia Bairu Cui Yong 1 , Chi Bo 2 , Chen Guo 3 , Ouyang Cheng 3 and Xia Bairu 1 1 China University of Geosciences, Beijing 100083, China 2 Research Institute of Daqing Oilfield Company Ltd., Heilongjiang 163712, China 3 Geological Exploration & Development Research Institute, PetroChina Chuanqing Drilling Engineering Company, Chengdu, Sichuan 610051, China

作者机构:China University of Geosciences Beijing 100083 China Research Institute of Daqing Oilfield Company Ltd. Heilongjiang 163712 China Geological Exploration & Development Research Institute PetroChina Chuanqing Drilling Engineering CompanyChengdu Sichuan 610051 China 

出 版 物:《Petroleum Science》 (石油科学(英文版))

年 卷 期:2010年第7卷第4期

页      面:472-476页

核心收录:

学科分类:081504[工学-水利水电工程] 07[理学] 08[工学] 0815[工学-水利工程] 070102[理学-计算数学] 0701[理学-数学] 

主  题:Reservoir stochastic simulation hard data Kriging algorithm residual realization 

摘      要:Unexpected noise in reservoir stochastic simulation realization may be too high to make the realization useful, especially when there is a lack of hard data. Through discussing the uncertainties, we present two ways to control the uncertainty ratio that is brought by the algorithm of stochastic simulation. By reasonably reducing the random value of the stochastic simulation result, the unexpected values introduced by the residual that associates with random series can be controlled. Another way when the data disperse unevenly is to control the stochastic simulation order by grouping the points that need to be simulated to make those points which can be simulated by more neighborhood hard data calculated first. Both methods do not go against the core stochastic simulation algorithm.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分