Bifurcations of Travelling Wave Solutions for a Two-Component Camassa-Holm Equation
Bifurcations of Travelling Wave Solutions for a Two-Component Camassa-Holm Equation作者机构:Center for Nonlinear Science Studies Kunming University of Science and Technology Kunming 650093 P. R. China Department of Mathematics Zhejiang Normal University Jinhua 321004 P. R. China Department of Mathematics and Center of Nonlinear ScienceUniversity of Science and Technology of China Hefei 230026 P. R. China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2008年第24卷第8期
页 面:1319-1330页
核心收录:
学科分类:0711[理学-系统科学] 07[理学] 070104[理学-应用数学] 071101[理学-系统理论] 0701[理学-数学]
基 金:the National Natural Science Foundation of China (10671179) and (10772158)
主 题:solitary wave kink wave solution periodic wave solution breaking wave solution smooth- ness of wave
摘 要:By using the method of dynamical systems to the two-component generalization of the Camassa-Holm equation, the existence of solitary wave solutions, kink and anti-kink wave solutions, and uncountably infinite many breaking wave solutions, smooth and non-smooth periodic wave solutions is obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of the above solutions are given. Some exact explicit parametric representations of travelling wave solutions are listed.