基于机器学习的批量网页篡改检测方法
Tamper detection of numerous web pages based on machine learning作者机构:北京大学计算中心北京100871 北京大学信息科学技术学院北京100871
出 版 物:《华中科技大学学报(自然科学版)》 (Journal of Huazhong University of Science and Technology(Natural Science Edition))
年 卷 期:2016年第44卷第11期
页 面:16-20页
核心收录:
学科分类:0810[工学-信息与通信工程] 12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 0808[工学-电气工程] 08[工学] 081201[工学-计算机系统结构] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家高技术研究发展计划资助项目(2015AA01A202)
摘 要:针对网页篡改问题,设计了一种基于机器学习的批量网页篡改检测方法.以一所综合性大学所有注册网站为研究对象,通过抓取网站首页面的所有信息,对抓取数据进行分类建立对应的检测规则,综合判断网页是否存在篡改.该方法分为学习阶段和检测阶段,学习阶段根据网页历史信息获取各个检测器的标准值,检测阶段对待检测网页的各个参数进行检测,综合多个检测器的输出,反馈检测结果,若结果为误报,则系统进行重新训练修正参数.以实际发生的网页篡改案例为依据,进行网页篡改模拟,并对误报率和漏报率进行了分析,结果表明:当检测数据集窗口大小为11,报警阈值为2时,误报率为1.183%,漏报率为0.878%,获得了最优的效果.