咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >RESEARCH ANNOUNCEMENTS——The Co... 收藏

RESEARCH ANNOUNCEMENTS——The Construction of Eigenvalue Problem Equivalent to Multivariate Polynomial System and the Groebner Basis

RESEARCH ANNOUNCEMENTS——The Construction of Eigenvalue Problem Equivalent to Multivariate Polynomial System and the Groebner Basis

作     者:冯果忱,吴文达,黄铠 

作者机构:Jilin University Changchun 130023 Jilin P.R.C. Jilin University Changchun 130023 Jilin P.R.C. Beijing Municipal Computer Center Beijing 100005 P.R.C 

出 版 物:《数学进展》 (Advances in Mathematics(CHINA))

年 卷 期:1993年第3期

页      面:282-284页

核心收录:

基  金:State Major Key Project for Basic Researches in China 

主  题:LP The Construction of Eigenvalue Problem Equivalent to Multivariate Polynomial System and the Groebner Basis RESEARCH ANNOUNCEMENTS 

摘      要:In this paper we will show that one cau build up a joint eigenvalue problem eq-uivalent to the. given system. By this way, finding the solutions of the given systemis equivalent to finding all eigenvalues and eigenvectors of one matrix or matrix pen-cil. For the special case that the system has finite isolated solutions, we can obtainall solutions through computing the eigenvalues and eigenvectors of a matrix whichcan Le obtained by Gauss-Jordan elimination. Furthermore, we also find that one canget Groebner Basis for the ideal geuerated by the given system iu this way. For any polynomial f(x)∈K[x1,x2,…,x_n],f(x) can be written as

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分