咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >VGIchan:Prediction and Classif... 收藏

VGIchan:Prediction and Classification of Voltage-Gated Ion Channels

VGIchan:Prediction and Classification of Voltage-Gated Ion Channels

作     者:Sudipto Saha Jyoti Zack Balvinder Singh G.P.S.Raghava 

作者机构:Institute of Microbial TechnologyChandigarh 160036India. 

出 版 物:《Genomics, Proteomics & Bioinformatics》 (基因组蛋白质组与生物信息学报(英文版))

年 卷 期:2006年第4卷第4期

页      面:253-258页

核心收录:

学科分类:0710[理学-生物学] 07[理学] 071009[理学-细胞生物学] 09[农学] 0901[农学-作物学] 090102[农学-作物遗传育种] 

基  金:the Council of Scientific and Industrial Research (CSIR) the Department of Biotechnology  Government of India 

主  题:ion channels prediction VGIchan SVM HMM 

摘      要:This study describes methods for predicting and classifying voltage-gated ion channels. Firstly, a standard support vector machine (SVM) method was developed for predicting ion channels by using amino acid composition and dipeptide composition, with an accuracy of 82.89% and 85.56%, respectively. The accuracy of this SVM method was improved from 85.56% to 89.11% when combined with PSIBLAST similarity search. Then we developed an SVM method for classifying ion channels (potassium, sodium, calcium, and chloride) by using dipeptide composition and achieved an overall accuracy of 96.89%. We further achieved a classification accuracy of 97.78% by using a hybrid method that combines dipeptidebased SVM and hidden Markov model methods. A web server VGIchan has been developed for predicting and classifying voltage-gated ion channels using the above approaches. VGIchan is freely available at ***/raghava/vgichan/.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分