WEAK CONVERGENCE TO BROWNIAN MOTION
WEAK CONVERGENCE TO BROWNIAN MOTION出 版 物:《东北师大学报(自然科学版)》 (Journal of Northeast Normal University(Natural Science Edition))
年 卷 期:1990年第2期
页 面:1-17页
核心收录:
主 题:Brownian motion weak convergence
摘 要:Let X;=(X;(t): t≥0) denote the continuous polygonalfunction whose vertices are where s;=z;+…+z;and the Z;’s are independent random variables with Ez;=0,vat z;=σ;;v;=σ;+…+σ;.Under standard condition onexpected values of ,itis shown that Xm converges weakly to Brownian motion in thetopology induced by the metric ρ(x,y) =wherex and y denote real continuous functions on [0,∞) and t log log tis taken to be 1 when t≤e;.A comparison is made withSakhanenkos’ similar *** is also shown thatconvergence,in probability,of the Skorokhod embedding times isa necessary condition for weak convergence to Brownian motion onthe unit interval under the supremum norm