咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >SU(m+n)SU(m)×SU(n) ISOSCALAR ... 收藏

SU(m+n)SU(m)×SU(n) ISOSCALAR FACTORS AND S(f1+f2)S(f1)×S(f2) OUTER-PRODUCT ISOSCALAR FACTORS

SU(m+n)SU(m)×SU(n) ISOSCALAR FACTORS AND S(f1+f2)S(f1)×S(f2) OUTER-PRODUCT ISOSCALAR FACTORS

作     者:陈金全 Chen Jinquan Department of Physics, Nanjing University, Nanjing, China

作者机构:Department of Physics Nanjing University Nanjing China 

出 版 物:《Acta Mathematica Scientia》 (数学物理学报(英文版))

年 卷 期:1985年第5卷第1期

页      面:19-34页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:ISF SU m+n f1+f2 f2 

摘      要:It is proved that the SU(m+n)SU(m)×SU(n) isoscalar factors (ISF) are equal to the S(f1+f2) outer-product ISF of the permutation group. Since the latter only depend on the partition labels, the values of the SU(m+n)SU(m)×SU(n) ISF do not depend on m and n explicitely. Consequently for a f(=f1+f2)-particle system, by evaluating the S(f) S(f1)×S(f2) outer-product ISF we can obtain all (an infinite number) of the SU (m+n) SU(m)×SU(n) ISF (or the f2-particle coefficients of fractional parentage) for arbitrary m and n at a single stroke, in stead of one m and one n at a time. A simple method, the eigenfunction method, is given for evaluating the SU(m+n) SU(m)×SU(n) single particle ISF, while the many-particle ISF can be calculated in terms of the outer-product reduction coefficients and the transformation coefficients from the Yamanouchi basis to the S(f1+f2) S(f1)×S(f2) basis.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分