SU(m+n)SU(m)×SU(n) ISOSCALAR FACTORS AND S(f1+f2)S(f1)×S(f2) OUTER-PRODUCT ISOSCALAR FACTORS
SU(m+n)SU(m)×SU(n) ISOSCALAR FACTORS AND S(f1+f2)S(f1)×S(f2) OUTER-PRODUCT ISOSCALAR FACTORS作者机构:Department of Physics Nanjing University Nanjing China
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(英文版))
年 卷 期:1985年第5卷第1期
页 面:19-34页
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
摘 要:It is proved that the SU(m+n)SU(m)×SU(n) isoscalar factors (ISF) are equal to the S(f1+f2) outer-product ISF of the permutation group. Since the latter only depend on the partition labels, the values of the SU(m+n)SU(m)×SU(n) ISF do not depend on m and n explicitely. Consequently for a f(=f1+f2)-particle system, by evaluating the S(f) S(f1)×S(f2) outer-product ISF we can obtain all (an infinite number) of the SU (m+n) SU(m)×SU(n) ISF (or the f2-particle coefficients of fractional parentage) for arbitrary m and n at a single stroke, in stead of one m and one n at a time. A simple method, the eigenfunction method, is given for evaluating the SU(m+n) SU(m)×SU(n) single particle ISF, while the many-particle ISF can be calculated in terms of the outer-product reduction coefficients and the transformation coefficients from the Yamanouchi basis to the S(f1+f2) S(f1)×S(f2) basis.