咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >ON RELATIVE INTEGRAL BASES OF ... 收藏

ON RELATIVE INTEGRAL BASES OF QUARTIC CYCLIC NUMBER FIELDS

ON RELATIVE INTEGRAL BASES OF QUARTIC CYCLIC NUMBER FIELDS

作     者:冯克勤 张贤科 FENG KEQIN ZHUANG XIANKE (University of Science and Technology of China, Hefei)

作者机构:University of Science and Technology of China Hefei University of Science and Technology of China Hefei is one i.e. O_F is a principle ideal ring (e.g.F = Q) then O_E is a free O_F-module and E/F has a relative integral basis. But in general case E/F may not have a relative integral basis. We are concerned about the existence of relative integral basis for K/k where K is 

出 版 物:《Chinese Science Bulletin》 (科学通报(英文版))

年 卷 期:1983年第28卷第4期

页      面:456-457页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:concerned integers Peterson 了万 tried 

摘      要:F is one, i.e. O_F is a principle ideal ring (e.g.F = Q), then O_E is a free O_F-module and E/F has a relative integral basis. But in general case E/F may not have a relative integral basis. We are concerned about the existence of relative integral basis for K/k, where K

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分