咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Dunkl's Theory and Best Approx... 收藏

Dunkl's Theory and Best Approximation by Entire Functions of Exponential Type in L_2-metric with Power Weight

Dunkl's Theory and Best Approximation by Entire Functions of Exponential Type in L_2-metric with Power Weight

作     者:Yong Ping LIU Chun Yuan SONG 

作者机构:School of Mathematical Sciences Beijing Normal University Laboratory of Mathematics and Complex Systems Ministry of Education 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2014年第30卷第10期

页      面:1748-1762页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Supported by National Natural Science Foundation of China(Grant No.11071019) the research Fund for the Doctoral Program of Higher Education and Beijing Natural Science Foundation(Grant No.1102011) 

主  题:Reflection group Dunkl transform Bessel function Jackson inequality continuous modulus 

摘      要:In this paper, we study the sharp Jackson inequality for the best approximation of f ∈L2,k(Rd) by a subspace Ek2(σ) (SEk2(σ)), which is a subspace of entire functions of exponential type (spherical exponential type) at most σ. Here L2,k(Rd) denotes the space of all d-variate functions f endowed with the L2-norm with the weight vk(x)=Пζ∈R+}(ζ,x)}2k(ζ),which is defined by a positive subsystem R+ of a finite root system R Rd and a function k(ζ):R→R+ invariant under the reflection group G(R) generated by R. In the case G(R) = Z2d, we get some exact results. Moreover, the deviation of best approximation by the subspace Ek2(σ) (SE2(σ)) of some class of the smooth functions in the space L2,k(Rd) is obtained.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分