Existence of Semiclassical States for a Quasilinear Schr?dinger Equation on R^N with Exponential Critical Growth
Existence of Semiclassical States for a Quasilinear Schr?dinger Equation on R^N with Exponential Critical Growth作者机构:Department of MathematicsZhejiang Normal UniversityJinhua 321004P.R.China Universidade de BrasiliaDepartamento de Matematica70910-900 BrasiliaDFBrazil
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2016年第32卷第11期
页 面:1279-1296页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:partially supported by PROCAD/UFG/Un B and FAPDF(Grant No.PRONEX 193.000.580/2009) partially supported by NSFC(Grant Nos.11571317,11101374,11271331) ZJNSF(Grant No.Y15A010026)
主 题:Exponential critical growth semiclassical solutions variational methods
摘 要:We study a quasilinear Schrodinger equation {-εN△Nu+V(x)|u|N-2= Q(x)f(u) in R^N,0〈u∈W1,N(RN),u(x)^|x|→∞0,where V, Q are two continuous real functions on R^N and c 〉 0 is a real parameter. Assume that the nonlinearity f is of exponential critical growth in the sense of Trudinger-Moser inequality, we are able to establish the existence and concentration of the semiclassical solutions by variational methods. Keywords Exponential critical growth, semiclassical solutions, variational methods