Experimental study of flow field distribution over a generic cranked double delta wing
Experimental study of flow field distribution over a generic cranked double delta wing作者机构:Department of Mechanical and Aerospace Engineering Malek Ashtar University of Technology
出 版 物:《Chinese Journal of Aeronautics》 (中国航空学报(英文版))
年 卷 期:2016年第29卷第5期
页 面:1196-1204页
核心收录:
学科分类:080103[工学-流体力学] 08[工学] 080104[工学-工程力学] 0801[工学-力学(可授工学、理学学位)]
主 题:Cranked double delta wing Flow field Hot wire Leading edge shape Vortical flow
摘 要:The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely "sharp" and "round", were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°- 20° with the step of 5°. The Reynolds number of the model was about 2 - 105 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.